Главная » Ментальная Арифметика

Математическое Действие

Если вас попросят решить что-то вроде « 4 + 2 × 3 », то естественно возникает вопрос: «Как мне это сделать? Потому что есть два варианта!» Я мог бы добавить сначала:

4 + 2 × 3 = (4 + 2) × 3 = 6 × 3 = 18

… или я мог бы умножить сначала:

4 + 2 × 3 = 4 + (2 × 3) = 4 + 6 = 10

Какой ответ правильный?

Разберем аналогичные примеры:

Для того  чтобы решить пример с примерами чисел,нужно прежде всего знать правила

Если в выражении скобок нет, то:

  • сначала выполняем слева направо все действия умножения и деления;
  • а потом слева направо все действия сложения и вычитания.

Пример:

( 10+6) — 38=

Порядок выполнения действий:
1) в скобках: 10 + 6 = 16;
2) вычитание: 38 – 16 = 22.

Если в выражение без скобок входит только сложение и вычитание, или только умножение и деление, то действия выполняются по порядку слева направо.

10 ÷ 2 × 4 = 20;

Порядок выполнения действий:
1) слева направо, сначала деление: 10 ÷ 2 = 5;
2) умножение: 5 × 4 = 20;

10 + 4 – 3 = 11, т. е.:

1) 10 + 4 = 14;
2) 14 – 3 = 11.

Если в выражении без скобок есть не только сложение и вычитание, но и умножение или деление, то действия выполняются по порядку слева направо, но преимущество имеет умножение и деление, их выполняют в первую очередь, а за ними и сложение с вычитанием.

Рассмотрим порядок действийв следующем примере.

Напоминаем вам, что порядок действий в математикерасставляется слева направо (от начала к концу примера).

При вычислении значения выражения можно вести запись двумя способами.

Первый способ

  • Каждое действие записывается отдельно со своим номером под примером.
  • После выполнения последнего действия ответ обязательно записывается в исходный пример.

Запомните! При расчёте результатов действий с двузначными и/или трёхзначными числами обязательно приводите свои расчёты в столбик.

Второй способ

  • Второй способ называется запись «цепочкой». Все вычисления проводятся в точно таком же порядке действий, но результаты записываются сразу после знака равно.

Запомните!Если выражение содержит скобки, то сначала выполняют действия в скобках.

Внутри самих скобок действует правило порядка действий как в выражениях без скобок.

Если внутри скобок находятся ещё одни скобки, то сначала выполняются действия внутри вложенных (внутренних) скобок.

Порядок действий и возведение в степень

Если в примере содержится числовое или буквенное выражение в скобках, которое надо возвести в степень, то:

  • Сначала выполняем все действия внутри скобок
  • Затем возводим в степень все скобки и числа, стоящие в степени, слева направо (от начала к концу примера).
  • Выполняем оставшиеся действия в обычном порядке

Теперь решаете вы:

18 ÷ 2 – 2 × 3 + 12 ÷ 3 =

Проверяем как вы решали…

Порядок выполнения действий:

1) 18 ÷ 2 = 9;
2) 2 × 3 = 6;
3) 12 ÷ 3 = 4;
4) 9 – 6 = 3;

т.е. слева направо – результат первого действия минус результат второго;

5) 3 + 4 = 7;

т.е. результат четвертого действия плюс результат третьего;

Если в выражении есть скобки, то сначала выполняются выражения в скобках, затем умножение и деление, а уж потом сложение с вычитанием.

30 + 6 × (13 – 9) = 54, т.е.:

1) выражение в скобках: 13 – 9 = 4;
2) умножение: 6 × 4 = 24;
3) сложение: 30 + 24 = 54;

Итак, подведем итоги. Прежде чем приступить к вычислению, надо проанализировать выражение: есть ли в нем скобки и какие действия в нем имеются. После этого приступать к вычислениям в следующем порядке:

1) действия, заключенные в скобках;
2) умножение и деление;
3) сложение и вычитание.

Оставьте комментарий